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Quantum transport in DNA wires: Influence of a dissipative environment
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Electronic transport through DNA molecular wires in the presence of a strong dissipative envi-
ronment is investigated. We show that new electronic states within the bandgap are formed induced
by the coupling to the environment. These states show up in the conductance spectrum as a tem-
perature dependent background and lead to a semiconducting to metallic transition with increasing
temperature. The transmission at the Fermi level displays a very weak exponential dependence on
the wire length as well as activated behavior with increasing temperature. Both results strongly
indicate a dominant role of the environment in determining the electronic transport properties of
the wire.
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In the emerging field of molecular electronics, DNA
oligomers have started in the last decade to attract the
attention of both experimentalists and theoreticians [1].
This has been mainly motivated by its exciting poten-
tial applications which include its use as templates in
molecular devices or by exploiting its self-assembling and
self-recognition properties [2]. Alternatively, they might
act as molecular wires either in its periodic configuration
e.g. as poly(GC), or by doping them with metal cations
as is the case of M-DNA [3]. As a consequence, the identi-
fication of the relevant charge transport channels in DNA
systems becomes a crucial issue. Transport experiments
in DNA derivatives are however quite controversial [4, 5].
DNA has been characterized as insulating [6], semicon-
ducting [7] or metallic [8, 9]. In particular, Xu et al. [9]
have recently shown that single poly(GC) oligomers may
display metallic behavior when measured in aqueous so-
lution, suggesting the possible role of the environment in
enhancing the DC conductivity of DNA. It becomes then
apparent that sample preparation and experimental con-
ditions are more critical than in transport experiments
on other nanoscale systems. Meanwhile a variety of fac-
tors that appreciably control charge propagation along
the double helix have been theoretically identified: static
[10] and dynamical [11] disorder related to random base
pair sequences and structural fluctuations, respectively,
as well as environmental effects associated with e.g. cor-
related fluctuations of counterions [12] or with the for-
mation of localized states within the bandgap [4, 13].

In the light of these recent results and inspired by the
experiments of Ref. [9], we focus in this letter on the
influence of a dissipative environment on the electronic
transport in DNA-based molecular wires contacted by
electrodes in a two-terminal setup. Surprisingly enough,
we find that the interaction of the charge carriers with
the environment results in an enhancement of the low-
bias conductance with increasing temperature.

Our description basically assumes that only the frontier
orbitals of the DNA stack are relevant for charge trans-
port. Frontier orbitals are mainly the highest-occupied

(HOMO) or the lowest-unoccupied (LUMO) molecular
orbital. They both have π character and are derived
from linear combinations of the pz orbitals of the base
pairs. We thus represent the π (or π∗) orbital stack in
a localized orbital picture. The opening of the HOMO-
LUMO gap is accounted by a perturbation of the π-stack,
along the lines of Ref. [14], in good agreement with first
principle calculations [3, 15, 16]. The environment is de-
scribed by a phonon bath that effectively comprises the
influence of counterions and hydration shells, see Fig. 1.
In our model an electron injected into the DNA wire can
then follow both coherent and incoherent pathways.
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FIG. 1: Schematic representation of the DNA molecular wire
in contact with a phonon bath (upper panel) and of the corre-
sponding density of states (lower panel). In the absence of the
dissipative bath, valence (VM) and conduction (CM) mani-
folds are separated by a semiconducting gap. Upon coupling
to the environment, a new set of states emerge within the gap.
Though strongly suppressed by the dissipative coupling, they
contribute with a finite density of states and eventually lead
to a conductance enhancement with increasing temperature.
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Our main issue is to disclose possible new transport
mechanisms induced by a modification of the wire elec-
tronic structure in presence of an environment. We es-
pecially address the temperature dependence of the elec-
tronic gap and the length dependence of the conductance
in the strong coupling limit to the bath degrees of free-
dom. Our results can be summarized as follows. First,
a remarkable modification of the transport properties of
the wire is found on the low-energy sector of the trans-
mission spectrum. Bath-induced states appear in the gap
region around the Fermi energy EF, see Fig. 1 for il-
lustration. They are however strongly washed out due
to the strong dissipative effect of the environment, so
that they do not manifest as well-defined resonances in
the transmission spectrum. Nevertheless, they induce a
finite, temperature dependent, density of states within
the gap. This leads to a crossover from semiconduct-
ing to metallic behavior in the low-voltage regime of the
I-V characteristics. Second, a weak exponential length
dependence and an activated Arrhenius-like behavior of
the transmission at the Fermi energy are found, reflect-
ing the strong contribution of incoherent processes. This
behavior can be related to early charge transfer experi-
ments on DNA in solution [8, 17].

We describe the system consisting of a DNA wire con-
taining N base pairs (HC + HC-c) [14], contacted to left
and right electrodes (Hleads), and in interaction with a
phonon bath (HB) by the following Hamilton operator:

H = HC + HC-c + Hleads + HB, (1)

HC = ǫb

∑

j

b†jbj − t||
∑

<i,j>

(

b†ibj + H.c.
)

,

HC-c = ǫ
∑

j

c†jcj − t⊥
∑

j

(

b†jcj + H.c.
)

,

Hleads =
∑

k∈L,R,σ

ǫkσd†
kσdkσ +

∑

k∈L,σ

(

Vk,1 d†
kσ b1 + H.c.

)

,

+
∑

k∈R,σ

(

Vk,N d†
kσ bN + H.c.

)

,

HB =
∑

α

ΩαB†
αBα +

∑

α,j

λαc†jcj

(

Bα + B†
α

)

.

bj , cj and dkσ are electronic operators on the central,
side chains and the electrodes, respectively, and Bα are
phonon operators. The onsite energies ǫb, ǫ will be set
equal to zero, if not stated otherwise. The parameters t||
and t⊥ describe hopping along the central chain and the
coupling between the central chain and the side chain,
respectively. The set of bath frequencies Ωα and corre-
sponding coupling constants λα, α = 1, . . . , M , do not
need to be further specified. By performing the thermo-
dynamic limit (M → ∞) later on, the bath can be de-
scribed by a spectral density J(ω) =

∑

α λ2
αδ(ω −Ωα) =

J0(ω/ωc)
se−ω/ωcΘ(ω), where ωc is a cut-off frequency

and Θ(ω) is the Heaviside function [18].

For λα = 0 ∀α, the model shows a temperature inde-
pendent gap in the electronic spectrum, the gap being
proportional to t⊥ (Fig. 1). Valence and conduction man-
ifolds, involving N states each, are symmetric w.r.t. the
Fermi level which is the zero of energy (particle-hole
symmetry). For nonzero coupling to the bath a more
involved behavior may be expected depending on the
electron-phonon coupling strength. The interaction with
the bath degrees of freedom can be eliminated by per-
forming a Lang-Firsov transformation as given by H̄ =
e SHe−S with generator S =

∑

α,j(λα/Ωα)c†jcj(Bα −
B†

α). Note that only the backbone operators cj are
modified by the above unitary transformation. As a re-
sult, the HC-c Hamiltonian in Eq. (1) is transformed into

(ǫ − ∆)
∑

j c†jcj − t⊥
∑

j(b
†
jcjX + H.c.) with the opera-

tor X = exp
[
∑

α(λα/Ωα)(Bα − B†
α)
]

, which renormal-
izes the transversal hopping term and the polaronic shift
∆ =

∑

α λ2
α/Ωα.

We focus here on the low-voltage regime in the trans-
port calculations, thus completely neglecting nonequi-
librium effects. Even in the presence of incoher-
ent processes, a conductance can be defined as [19]:
g = (2e2/h)

∫

dE (−∂f/∂E) t(E), where t(E) =
4Tr

{

ImΣL G ImΣR G
†
}

. Both coherent and incoherent
contributions to transport are hidden in the wire matrix
Green function G. In what follows, we always plot the
energy dependent transmission function t(E) rather than
g to filter out temperature effects arising from the deriva-
tive of the Fermi function. For completeness the current
as given by I(V ) = (2e/h)

∫

dE (f(E − eV /2) − f(E +
eV /2))t(E) is also shown. The Green function G can be
calculated using equation of motion techniques [20]. One
finds:

G
−1(E) = E1−HC − Σ(E) − t2⊥P(E) (2)

Pℓj(E) = −i δℓj

∫ ∞

0

dt e i (E+i 0+)t e−i (ǫ−∆) t e−Φ(t)

where Σ(E) = ΣL(E) + ΣR(E) and e−Φ(t) =
〈

X (t)X †(0)
〉

B
is a dynamical bath correlation function.

ΣL/R are electrode selfenergies which are calculated in
the wide-band limit, i.e. ΣL,ℓj(E) = −i ΓLδ1ℓδ1j and
ΣR,ℓj(E) = −i ΓRδNℓδNj .

We limit our discussion to the strong-coupling limit
(SCL) to the bath degrees of freedom, where an apprecia-
ble modification of the electronic spectrum is found. Re-
sults for the weak coupling case are presented elsewhere
[20]. The SCL is defined by the condition J0/ωc > 1.
Some insight can be gained by approximately perform-
ing the integral of Eq. (2). When J0/ωc > 1 a short
time expansion of the bath correlator Φ(t) can already
give reasonable results. The resulting gaussian integral
(Φ(t) ∼ (ωct)

2 for ωct ≪ 1) yields:
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FIG. 2: Upper panel: Transmission t(E) for two different tem-
peratures; the inset is a log-plot of the conductance around
E = 0 showing the strong temperature dependence of the
pseudo-gap. Lower panel: I-V characteristics. Parameters:
N = 15, J0/ωc = 2, t|| = 0.6 eV, t⊥/t|| = 0.15, ΓL/R/t|| =
0.25.

Pℓj(E) = −i δℓj

√
π

2ωc

√

κ(T )
exp

(

− (E − ǫ + i 0+)2

4ω2
cκ(T )

)

×
(

1 + erf

[

i (E − ǫ + i 0+)

2ωc

√

κ(T )

])

. (3)

The temperature dependent function κ(T ) scales as
κ(T ) ∼ const. and as κ(T ) ∼ kBT for low and high tem-
peratures, respectively. We note Eq. (3) is independent
of the exponent s characterizing the low-frequency be-
havior of the bath spectral density, J(ω) ∼ ωs, since
the short-time dynamics is mainly affected by the high-
frequency bath modes (ω > ωc) and the spectral density
has a similar asymptotic behavior at high-frequencies for
all s.
In Fig. 2 the conductance and the corresponding current
are shown. The gap in the transmission spectrum t(E) is
seen to increase with temperature and the low-voltage I-
V characteristics show a crossover from semiconducting
to metallic behavior with increasing temperature. The
reason is that in the SCL a pseudo-gap rather than a gap
in the electronic spectrum is induced by the bath dy-
namics. An analysis of the real and imaginary parts of
P (E), Eq. (3), at low energies helps to understand this.
We can show that (i) ReP (E) ∼ E for E ∼ 0 and (ii)
Im P (E) is peaked at E = 0. For comparison, in the ab-
sence of the bath Re P (E) would display a 1/E behavior
around E = 0 [14]. It follows from (i) that additional
low energy poles of the wire Green function G(E) might
emerge symmetrically placed around the Fermi energy,
building a third electronic manifold. They might show
up as resonances in the transmission spectrum inside the
gap, see also Fig. 1. We note that they are neither present
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FIG. 3: Upper panel: Length dependence of t(EF ). Pa-
rameters: t⊥/t|| = 0.5, ΓL/R/t|| = 0.15, T = 300K. In-
set: temperature dependence of the decay length γ. Lower
panel: Arrhenius plot for t(EF ). Parameters: N = 20, t|| =
0.2 eV, t⊥/t|| = 0.4, ΓL/R/t|| = 0.5.

for λα = 0 nor in the weak-coupling limit [20]. For an
infinite wire, we would then have three electronic bands.
It turns out however that the non-vanishing ImP (E) has
a dramatic influence on these new states. Since they ap-
pear in an energy region where ImP (E) is appreciably
different from zero, no well-defined resonances manifest
in the low-energy sector of the transmission. Neverthe-
less, these bath-induced states do contribute with a tem-
perature dependent background and eventually lead to
an increase in the density of states near E = 0 when the
temperature grows. Hence, the current may be enhanced
at low voltages with increasing temperature.

A controversial issue in transport through DNA-based
systems is the actual length dependence of the electron
transfer rates or correspondingly, of the linear conduc-
tance [17, 21, 22]. Different functional dependences have
been found in charge transfer experiments ranging from
strong exponential behavior by superexchange mediated
electron transfer [21] to algebraic dependences typical of
sequential hopping [17, 22]. As far as transport exper-
iments are concerned, Xu et al. [9] reported an alge-
braic length dependence of the conductance for poly(GC)
oligomers in solution. Theory has shown that a transi-
tion between different regimes may happen as a func-
tion of the wire length [23]. We have investigated the
length dependence of t(EF ) and found for reasonable pa-
rameters an exponential law for energies close to EF,
t(EF) ∼ exp(−γL), see Fig. 3. At the first sight, this
might be not surprising since a gap in the spectrum does
exist. Indeed, in the absence of the bath, i.e. with an
intrinsic semiconducting gap, we get decay lengths γcoh

of the order of 2 Å
−1

. However, as soon as the interac-
tion with the bath is included, we find values of γ much
smaller than expected for virtual tunneling, ranging from
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0.15 Å
−1

to 0.4 Å
−1

. Additionally, γ is strongly depen-
dent on the strength of the electron-bath coupling J0/ωc

as well as on temperature; γ is reduced when J0/ωc or
kBT increases, see Fig. 3, since in both cases the density
of states within the pseudo-gap increases. These results
clearly indicate that the bath does strongly determine
the effective decay length in a way which we can quan-
tify by extracting a γenv term such that γ = γcoh − γenv.
The first contribution γcoh is purely determined by the
intrinsic electronic structure of the wire and can be ob-
tained, e.g. by means of complex band structure ap-

proaches [15, 24]. A γcoh of the order of 1.5 Å
−1

has
been recently calculated for poly(GC) [15], which com-
pares well with our estimated γcoh. The dependences
on J0 and kBT are hence contained in the bath-induced
contribution γenv.
In Fig. 3, we also show an Arrhenius plot of the trans-
mission at the Fermi energy. Activated behavior can be
clearly seen. As expected, the absolute values of the
transmission increase with increasing J0/ωc. The on-
set temperature is strongly dependent on the transver-
sal hopping t⊥. The larger t⊥ is, the lower the onset
temperature is (not shown).
From the length and temperature dependence of t(EF )
the physical picture that emerges is of a charge carrier
making an incursion into the side chain and remaining
localized there as a result of the strong electron-bath
coupling. When the temperature increases, thermal acti-
vated hopping to the central chain becomes efficient and
the charge carrier can jump back and dissipate into the
leads. The temperature at which activated processes be-
gin to occur will thus sensitively depend on the interplay
between J0/ωc and t⊥.
In conclusion, we have investigated the influence of a dis-
sipative environment on charge transport in a wire model
which mimics basic features of the electronic structure
of DNA oligomers. We found a strong modification of
the low-energy charge transport properties in the strong-
coupling regime. Indeed, a pseudo-gap is formed and a
transition from semiconducting to metallic behavior at
low voltages with increasing temperature is found. Al-
ternatively, this may also be seen as a crossover from
coherent (low-temperature) to strongly incoherent (high-
temperature) transport. We finally mention that the in-
clusion of a random base pair distribution in the spirit
of the Anderson model to account for intrinsic structural
fluctuations does not qualitatively change the above pic-
ture [20]. Disorder mainly washes out the side bands in
the transmission without essentially changing the behav-
ior around the Fermi level. Similarly, shifting the onsite
energies on a finite segment of the wire to model the
insertion of AT-base pairs in an otherwise homogeneous
GC-chain, only leads to a stronger fall-off of t(EF ), with-
out modifying the exponential dependence.
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